Dense time series of harmonized Landsat Sentinel-2 and ensemble machine learning to map coffee production stages.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: PARREIRAS, T. C.; SANTOS, C. de O.; BOLFE, E. L.; SANO, E. E.; LEANDRO, V. B. S.; SILVA, G. B. S. da; SILVA, L. A. P. da; FURUYA, D. E. G.; ROMANI, L. A. S.; MORTON, D.

Resumo: Coffee demand continues to rise, while producing countries face increasing challenges and yield losses due to climate change. In response, farmers are adopting agricultural practices capable of boosting productivity. However, these practices increase intercrop variability, making coffee mapping more challenging. In this study, a novel approach is proposed to identify coffee cultivation considering four phenological stages: planting (PL), producing (PR), skeleton pruning (SK), and renovation with stumping (ST). A hierarchical classification framework was designed to isolate coffee pixels and identify their respective stages in one of Brazil’s most important coffee-producing regions. A dense time series of multispectral bands, spectral indices, and texture metrics derived from Harmonized Landsat Sentinel-2 (HLS) imagery, with an average revisit time of ~3 days, was employed.This data was combined with an ensemble learning approach based on decision-tree algorithms, specifically Random Forest (RF) and Extreme Gradient Boosting (XGBoost). The results achieved unprecedented sensitivity and specificity for coffee plantation detection with RF, consistently exceeding 95%. The classification of coffee phenological stages showed balanced accuracies of 77% (ST) and from 93% to 95% for the other classes. These findings are promising and provide a scalable framework to monitor climate-resilient coffee management practices.

Ano de publicação: 2025

Tipo de publicação: Artigo de periódico

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.