Espectrometria e tecnologias de aprendizagem de máquina para auxiliar na conservação de sementes nativas de florestas seca
Espectrometria e tecnologias de aprendizagem de máquina para auxiliar na conservação de sementes nativas de florestas seca
Autoria: FERREIRA, M. A. R.; GOMES, R. A.; SILVA, J. C.; SILVA, J. de J.; FREITAS, M. V. C.; FREITAS, S. T. de; DANTAS, B. F.
Resumo: O armazenamento de sementes nativas desempenha um papel crítico na conservação, enriquecimento e restauração de ambientes degradados. A avaliação tradicional da qualidade das sementes armazenadas depende de testes destrutivos para avaliar a viabilidade, a germinação e o teor de água (TA). O objetivo deste trabalho foi desenvolver um método fácil e não destrutivo para avaliar o TA e a qualidade fisiológica de sementes, utilizando um espectrômetro portátil Vis-NIR com um modelo de algoritmo de aprendizado de máquina ajustado para essa análise. Sementes de diferentes populações de duas Fabaceae foram avaliadas individualmente quanto à germinação, teor de água com espectrômetro portátil F-750 (Felix Instruments, EUA). O TA de referência foi obtido após secagem a 105°C/24h, pesando-se as sementes individualmente. Para classificação da germinação, após a leitura individual das sementes no espectrômetro foi realizado o teste de germinação para as duas espécies, com quatro repetições de 25 sementes para cada lote. Foi realizada, também, avaliação individual das sementes quanto à germinação (SIM- germinada ou NÃO- não germinada). A validação externa e interna dos modelos foi obtida dividindo os dados em etapas de treinamento (70%) e de teste (30%), utilizando validação cruzada 10x. Os dados espectrais obtidos pelo espectrômetro foram processados utilizando o software Weka 3.8.6. Os algoritmos discriminativos aplicados foram Support Vector Machine, Multilayer Perceptron, Random Forest e J48. O algoritmo Randon Forest obteve o melhor ajuste tanto para avaliação do TA (R>0,90 e RMSE<2,5) quanto para classificação da germinação (acurácia e precisão>90%), que os demais algoritmos, no entanto, ainda necessitam de estudos de pré-processamento de dados. A avaliação da qualidade de sementes pode ser rápida, precisa, não destrutiva e acessível por meio da utilização de espectrômetro portátil e de modelos bem ajustados.
Ano de publicação: 2024
Tipo de publicação: Resumo em anais e proceedings
Unidade: Embrapa Semiárido
Palavras-chave: Espectrômetro portátil, Floresta seca, Germinação, Machine-learning, Seeds, Semente, Sementes nativas, Teor de água, Vis-NIR
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.