Self-Organizing Map approach to cluster Brazilian agricultural spatiotemporal diversity.
Self-Organizing Map approach to cluster Brazilian agricultural spatiotemporal diversity.
Autoria: SANTOS, F. E. de O.; SILVA, M. A. S. da; MATOS, L. N.; MOURA, F. R. de; DOMPIERI, M. H. G.
Resumo: This work aims to cluster Brazilian municipalities according to their spatiotemporal agricultural diversity pattern. The diversity index has been defined for eight categories and calculated by Shannon’s entropy index from annual (1999-2018) IBGE’s estimates for agricultural production. The proposed clustering method is based on the Self-Organizing Map, an unsupervised artificial neural network, and comprises visual and automatic steps. The method partitioned the municipalities into eight groups spatially organized in three regions showing different spatiotemporal patterns. Este trabalho tem como objetivo agrupar os municípios brasileiros de acordo com seu padrão espaço-temporal de diversidade agrícola. O índice de diversidade foi definido para oito categorias e calculado pela entropia de Shannon a partir das estimativas anuais (1999-2018) do IBGE para a produção agrícola. O método de agrupamento proposto é baseado no Mapa Auto-Organizável, uma rede neural artificial não supervisionada, e compreende etapas visuais e automáticas. O método dividiu os municípios em oito grupos organizados espacialmente em três regiões, mostrando diferentes padrões espaço-temporais.
Ano de publicação: 2021
Tipo de publicação: Artigo em anais e proceedings
Unidade: Embrapa Tabuleiros Costeiros
Palavras-chave: MONITORMENTO POR SATÉLITE, Map projections, Mapa, ORGANIZAÇÃO ESPACIAL
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.