Utilização de machine learning para classificação de plantas saudáveis e plantas submetidas ao estresse.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: VIANA, J. V. S.; DANTAS, L. P.; PAULA, O. R. de; BARRETO, B. B.; MILORI, D. M. B. P.

Resumo: A integração de tecnologias na agricultura tem se tornado cada vez mais comum, trazendo consigo uma série de benefícios, desde o aumento da produtividade até contribuições para a sustentabilidade. Uma das tecnologias promissoras que pode ter um papel importante nesse cenário é o aprendizado de máquina (machine learning), especialmente no que diz respeito à avaliação da saúde das plantas. Neste contexto, o objetivo do trabalho foi classificar plantas saudáveis e inoculadas com patógeno utilizando quatro diferentes técnicas de machine learning: Análise Discriminante, Regressão Logística, AdaBoost, um algoritmo de boosting, que combina múltiplos classificadores fracos para formar um classificador mais preciso, e SVM (Support Vector Machine), que é um algoritmo que separa os dados usando um hiperplano. Para esse propósito, foram utilizados dados coletados de três técnicas distintas: Fluorcam, Espectroscopia induzida por laser (LIFS) e Câmera Térmica. No âmbito computacional, diferentes modelos foram treinados e testados para cada equipamento. Os resultados revelaram que a melhor taxa de acerto foi obtida com os dados de imagem de fluorescência fornecidos pelo equipamento Fluorcam, alcançando uma taxa de acerto de 75% utilizando o modelo SVM. Para o LIFS, a taxa de acerto foi maior, atingindo 80% também utilizando o modelo SVM. Já para os dados de termografia a taxa de acerto foi de 90% utilizando o AdaBoost. Esses resultados evidenciam a relevância e o potencial do uso do machine learning na classificação de plantas inoculadas, especialmente quando combinado com tecnologias específicas. A partir desses resultados, conclui-se que o desenvolvimento de soluções usando machine learning pode contribuir significativamente para o monitoramento e aprimoramento da detecção do ataque de patógenos na planta, impulsionando assim a eficiência e a sustentabilidade da agricultura.

Ano de publicação: 2023

Tipo de publicação: Resumo em anais e proceedings

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.